A Kakeya maximal function estimate in four dimensions using planebrushes
نویسندگان
چکیده
منابع مشابه
On a Lipschitz Variant of the Kakeya Maximal Function
This paper is part of a series of papers of the authors [10,11] concerning certain degenerate Radon transforms. In this paper, we are concerned with a maximal function estimate over rectangles in the plane, which have a prescribed maximal length, but arbitrary orientation and width. That is, we are concerned with a certain variant of the Kakeya maximal function. The rectangles used in the maxim...
متن کاملA Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator
We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.
متن کاملA Note on the Kakeya Maximal Operator
In this paper we obtain an upper bound for the L2 norm for maximal operators associated to arbitrary finite sets of directions in R 2.
متن کاملA Recursive Bound for a Kakeya-type Maximal Operator
A (d, k) set is a subset of R containing a translate of every kdimensional plane. Bourgain showed that for 2 + k ≥ d, every (d, k) set has positive Lebesgue measure. We give an L bound for the corresponding maximal operator.
متن کاملA Sharp Estimate for the Hardy-littlewood Maximal Function
The best constant in the usual L norm inequality for the centered Hardy-Littlewood maximal function on R is obtained for the class of all “peak-shaped” functions. A function on the line is called “peakshaped” if it is positive and convex except at one point. The techniques we use include variational methods. AMS Classification (1991): 42B25 0. Introduction. Let (0.1) (Mf)(x) = sup δ>0 1 2δ ∫ x+δ
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista Matemática Iberoamericana
سال: 2020
ISSN: 0213-2230
DOI: 10.4171/rmi/1219